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CMR CHEMICAL SHIFTS AND TOTAL CHARGE DENSITIES OF [2.2]CYCLOPHANES.
THE EFFECT OF TRANSANNULAR TT-T] INTERACTION

Tetsuo TAKEMURA, Kazushi TOKITA, Shoichi KONDO, and Nobuo MORI
Department of Chemistry, Science University of Tokyo, Kagurasaka

1-3, Shinjuku-ku, Tokyo 162

The chemical shifts for the transannularly J7-7T interacted and
the non-interacted aryl carbons in three [2.2]cyclophanes bear
linear relationships to the total charge densities. The interacted
carbons are shifted downfield by ca. 7 ppm compared with the non-

interacted ones, when the total charge densities are the same.

[2.2]Cyclophanes are distinguished by abnormal physical and chemical
properties. Several qualitative explanations have been given for the origin of the
abnormality: JT-electron repulsion between the benzene rings,l’z) hyperconjugation

4) and transannular

with the bridging C-C bonds,z) nonplanarity of the benzene rings,
Jt-7T interaction between the benzene rings.s) Boschi and Schmidts) suggested from
the ionization energies and transannular JT-7T resonance integrals of [2.2]metacyclo-
phane, 1, and [2.2]paracyclophane, 3, that transannular JT-7T interaction may take
place between C-8 and C-16 in 1 and between C-3 and C-14 and between C-4 and C-13

13C chemical shifts for spatially

in 3. Sato and Takemuraz) found unusually large
adjacent aryl carbons in 1 and 3 and in [2.2]metaparacyclophane, 2, and attributed
this to JT-electron repulsion between the carbons in consideration of the correlation

13

between electron density and ~~C chemical shift (/J') found in planar aromatic

systems.6’7)

In order to investigate whether a similar correlation is practically possible
in 1-3, we have calculated the 7T-, - and total charge densities (Dy's, calculated
using 2pz orbital only, Dg's and Dt's) by the CNDO/2 methodg) using the geometrical

data from X-ray analyses.g) The Dt's thus calculated are given in Fig. 1. A fairly

good linear relationship was obtained between 510) and Dt or Dyy (Fig. 2, showing a
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Fig. 1. Total charge densities (Dt><103) for [2.2]cyclophanes
(1-3) and xylenes (4,5)

plot of S vs. Dt), but not between Jand Dg” (Fig. 3). In Fig. 2, the transannularly
T-T interacted and the non-interacted carbons in 1 and és) lie roughly on parallel,
lower and upper straight-lines separated by ca. 7 ppm. The non-interacted aryl
carbons in planar models, 4 and 5, lie on the upper line. Judging from this
relationship, in 2 only C-4 and C-5, which lie on the upper line, may be non-

interacted and the other carbons, positioned on the lower line, may be 7T-7T

9)

interacted. This may be expected from the geometry, in which C-4 and C-5 are

most remote from the p-bridged benzene ring. Although the reason for the 7 ppm

deshielding for the 71-71 interacted carbons is not clear, this would, at least in

12)

part, be attributed to a decrease of the effective excitation energy (AE) in the

3) since the UV absorption maxima A

. 1
paramagnetic term (ob), max

1
( Algﬁ’BZu) of

compounds 1-3 are bathochromically shifted by 10-20 nm from those of their open-

4,14)

chain analogs. A further work on this problem is under way.
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Fig. 2. A plot of 3C chemical shift (§) vs. total charge density (Dt):

m, l1; ¢, 2; 4, 3; A, m-Xxylene; o, p-xylene.
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Fig. 3. A plot o C chemical shift (d) vs. 0 -charge density (Dg):

m, 1; 0, 2;a4, 3; a, m-xylene; o, p-xylene.
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